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Abstract

The paper introduces several examples of the utilization of the computer algebra system Maple
in selected courses at the University of South Bohemia. These examples are devoted to the notion
of geometric transformations and they span the range from planar mappings like congruences,
affine maps and inversion to the kinematics of serial robot-manipulators, specifically to the for-
ward and inverse kinematic problems. We will see that the kinematics of simple mechanisms - at
the beginning we can restrict ourselves to planar mechanisms - offers real and attractive prob-
lems, the solving of which require mostly basic knowledge of linear algebra, geometry, differential
geometry and methods of solving systems of nonlinear algebraic equations.

Solving of relatively simple real-world problems that require the combination of various mathematical
knowledge plays an ever more important part in mathematics education. Computer algebra systems
(CAS in what follows) enable teachers to bring various real-world problems into classrooms. These
programmes provide students and teachers with the means to develop symbolic representation of
such problems, model them graphically and solve them symbolically or numerically. Such a process,
closed with the solution and a functional model, is in our opinion very beneficial to developing true
understanding of all utilized mathematical terms. Suitable use of CAS relieves students of intricate
computation and formulae manipulation and gives them the opportunity to concentrate on the basic
facts.

The paper introduces several examples of the utilization of the computer algebra system Maple
in selected courses at the University of South Bohemia. These examples are devoted to the notion
of geometric transformations and they span the range from planar mappings like congruences, affine
maps and inversion to the kinematics of serial robot-manipulators, specifically to the forward and
inverse kinematic problems. The common features of the examples are the application of matrix
algebra and emphasis on a graphical output. Their objectives reach from the simple illustration of
the graphical means of Maple (Example 1, Figure 3) over showing its use in the building of models
of robot-manipulators (Example 4, 5); to the demonstration of the benefits of Maple’s symbolic and
numerical capabilities (Examples 2, 3, 6, 7). The codes of all examples run in Maple 9.5 and higher
versions of Maple.
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We will see that the kinematics of simple mechanisms - at the beginning we can restrict ourselves
to planar mechanisms - offers real and attractive problems, the solving of which require mostly basic
knowledge of linear algebra, geometry, differential geometry and methods of solving systems of
nonlinear algebraic equations.

The given examples are introduced in several university courses that are intended for students of
the mathematics teacher training programmes and for students of computer science and information
technologies. Some of the problems can be met in basic courses of Linear algebra and Geometry,
where they serve as real-world problems to build and fasten the understanding of the notion of ge-
ometry mapping and the connection between affine mappings and matrices. The other problems are
solved in Geometry courses devoted to differential geometry and kinematics or in the specialized
course of problem solving in Maple. The most utilized version of Maple in these courses is Maple
9.5.

1 Introduction to geometric transformations

1.1 Affine transformations
Geometry and Linear algebra are closely interconnected and both branches are essential in many
fields, including computer graphics, scientific computation and robotics [Farin, 1998]. Understand-
ing the correspondence between matrices and affine transformations can help to clarify the meaning
of such key notions from Linear algebra and Geometry such as the linear map, affine map, image
and kernel of an affine map, composition of affine maps and transformation of the coordinate sys-
tem. Then the application of matrices, for instance in computer graphics or in programming, becomes
understandable and natural for students of computer science and information technologies. Our ex-
perience in the teaching of Linear algebra and Geometry indicates that the best means to establish
the right knowledge of correspondence between Linear algebra and Geometry is some interactive
application example that enables students to experience the control of a process.

The following are two examples of the above. The first one we use to illustrate the meaning of the
notions linear and affine map and to explain the role of the matrix of a linear transformation.

Example 1 Transformation of a letter. Consider a set of points in the plane of some clear shape,
for example the letter ”F”. Define an affine transformation of the plane and apply it to the set.

The Maple code of the solution (see [1]):

At the beginning we will open the necessary packages:
> with(plots): with(linalg):
The set of points that will be transformed - the letter ”F” in our case - is defined as a vector of
sequences of points. Its name is F and the corresponding plot structure is named F_g:
> F:=[seq([0,k/1000],k=0..500),seq([k/1000,0.3],k=0..150),

seq([k/1000,0.5],k=0..230)]:
> F_g:=pointplot(F,color=red, scaling=constrained):
An affine map X ′ = M · X + T is a composition of a linear map, given by the matrix M and a
translation, given by the matrix (or a column vector) T. To apply this general affine map to the given
set of points we will use the function AffineMap that is based on the map command:
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> AffineMap:=X->map(x->evalm(M.x+T),X);
Now we can define the concrete matrices to represent translation T and the linear map M:
> M := matrix([[1, 1/4], [1/2, 1/2]]);

M :=

 1
1

4
1

2

1

2


> T := [1/10, 1/20];

T :=

[
1

10
,
1

20

]
The image of our letter ”F” in the map AffineMap is the value of the function AffineMap(F).
The corresponding plot structure is named Tr_F_g.
> Tr_F_g:=pointplot(AffineMap(F),color=blue, scaling=constrained):
Finally, we can plot the original set - the red straight letter ”F” together with its image - the blue
transformed letter ”F” (See Figure 1.1).
> display(F_g,Tr_F_g, axes=none, scaling=constrained);

Figure 1: Transformation of the letter F

It is very beneficial to let students, after a brief introduction to the worksheet, make their own
experiments with the transformation - i.e. with the matrices M and T. Then we can give them some
images of transformations (see Figure 2) of the letter ”F” and challenge them to find the corresponding
affine maps.

Figure 2: Find the corresponding affine maps

226



The Electronic Journal of Mathematics and Technology, Volume 3, Number 3, ISSN 1933-2823

1.2 Circle inversion
We use the same method as for the introduction into the affine maps to show how the circle inversion
works (Figure 3). For many students it is very difficult to accept the behaviour of the Inversion. Maple
helps them to examine the properties of this transformation and to break the mental stereotypes that
block their acceptance of such nonlinear mapping. The Maple code of the solution is almost the same
as the code of the above affine map with the exception that after the establishment of the reference
circle by the command
> u:=xˆ2+yˆ2-1=0;
we take advantage of the Maple command transform from the package plottools to define the
circle inversion mapping CircInv:
> CircInv:=plottools[transform]((x,y)->[x/(xˆ2+yˆ2),y/(xˆ2+yˆ2)]);

Figure 3: The Circle Inversion

The Maple code of the solution is here, or see [2].

1.3 Kinematic geometry
The next example combines the ability to apply an affine map with the very elementary knowledge
of differential geometry. Students solve it to prove that they have mastered these issues together with
the application of Maple in the course Solving problems using Maple.

Example 2 Draw an arbitrary curve given by the vector-valued function. Define some figure (n-
angle) and animate a motion of this figure along the curve. The figure should respect the tangent
direction to the curve.

Selected commands from the Maple code of the solution:

As a guide curve, for instance, we use the Bernoulli’s lemniscate with the following parametric ex-
pression:
> X:=[10*cos(t)/(1+sin(t)ˆ2),8*sin(t)*cos(t)/(1+sin(t)ˆ2)];
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X :=

[
10 cos(t)

1 + sin(t)2
,
8 sin(t) cos(t)

1 + sin(t)2

]
For the later plotting we generate the plot structure of this curve:
> X_g:=plot([X[1],X[2],t=0..2*Pi],scaling=constrained):
As a figure that should be moved along the curve we use an 8-angle shaped into the letter T. First we
define the home position of the letter through the coordinates of its vertices (see Figure 4). We assign
the list of coordinates of these eight consecutive vertices, followed with the coordinates of the first of
them, to the variable Letter_T0.
> Letter_T0:=[[2,0],[2,5],[4,5],[4,7],[-2,7],[-2,5],[0,5],[0,0],
[2,0]]:

–2

2

4

6

–10 –5 5 10

Figure 4: The letter T in its home position

As we know, the instantaneous position of the letter, corresponding to a specific value of the parameter
t, can be described by the affine map X ′ = M(t) ·X + T (t). Then M(t) is the matrix of revolution
of the tangent vector v⃗(t) to the curve at the contact point X(t) between the letter and the curve.
The entries of the matrix M(t) are simply direction cosines of the tangent vector v⃗(t) that are the

coordinates of the normalized tangent vector v⃗n(t) =
v⃗(t)

| ⃗v(t)|
:

M(t) =

[
cosφ sinφ
sinφ − cosφ

]
=

 cosφ cos (
π

2
− φ)

cos (
π

2
− φ) − cosφ

 =


v1
|v⃗|

v2
|v⃗|

v2
|v⃗|

− v1
|v⃗|


The translation T (t) is defined by the radius vector of the point X(t), therefore we can write that
T (t) = X(t).
> v:=diff(X,t);

v :=

[
− 10 sin(t)

1 + sin(t)2
− 20 cos(t)2 sin(t)

(1 + sin(t)2)2
,

8 cos(t)2

1 + sin(t)2
− 8 sin(t)2

1 + sin(t)2
− 16 sin(t)2 cos(t)2

(1 + sin(t)2)2

]
> vn:=map(x->(1/norm(v,2)*x),v):
> M:=matrix([[vn[1],vn[2]],[vn[2],-vn[1]]]):
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> T:=X:
Using the map command we transform the fixed set of points Letter_T0 into the moving Letter_T,
whose relative position to the Letter_T0 depends on the parameter t.
> Letter_T:=map(x->evalm(M&*x+T),Letter_T0):
To animate the parametric motion of the letter T (Letter_T) along the given curve (X_g) we take
advantage of the option insequence=true of the command plots[display].
> Letter_T_g:=display(seq(pointplot(eval(Letter_T,t=u/10),style=line,

color=red),u=0..63),insequence=true,scaling=constrained):
> display([X_g,Letter_T_g]);
The result of the later command display is shown in Figure 5. To get the animation menu we
simply click on the plot. Then we press the button Play to play the animation.

–2
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2

4

6

8

–10 –5 5 10

Figure 5: The letter T moves along the Bernoulli’s lemniscate

The Maple code of the solution is here, or see [3].

1.4 Projects
The course Solving problems using Maple is concluded by submission of student projects. Some of
them are devoted to congruent transformations in 2D or 3D.

1.4.1 Planar motion - Cycloids

Let’s look at the complete assignment of the project Cycloids to introduce the way that such projects
are given. It contains setting of a problem, a brief introduction to the subject of the problem and a
short Maple reference to provide some hints.

Student project - CYCLOIDS

Cycloid. Consider a circle of radius r which is rolling along another circle of radius R or along a
straight line. Then the point firmly connected to the moving circle at distance d from its centre draws
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a curve of the name cycloid. According the relation between d and r we speak about a curtate (con-
tracted) cycloid (d < r) or about a prolate one (d > r). If the circle is rolling outside another circle
we call the given curve the epicycloid. If it is rolling inside another one we call it the hypocycloid.

PROBLEM: Plot the epicycloids and hypocycloids mentioned above. Choose your own values of R
and r. Consider the both cases d < r and d > r. Animate the corresponding rolling.

Maple reference. We can take advantage of homogeneous coordinates. Using them planar transfor-
mations are represented by square matrices (3, 3) and compositions of transformations are produced
by multiplication of the matrices. First define the matrix of revolution Rev(α) and the matrix of
translation T(t1,t2) as functions of variable parameters. Then assign the initial location of the
point A (cycloid is the locus of this point); A = ⟨1, d, 0⟩. Finally transform the coordinates of the point
A using the convenient composition of transformations Rev(α) and T(t1,t2) with the common
parameter t.
> Rev:=alpha->matrix([[1,0,0],[0,cos(alpha),-sin(alpha)],

[0,sin(alpha),cos(alpha)]]);

Rev := α →

 1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)


> T:=(t1,t2)->matrix([[1,0,0],[t1,1,0],[t2,0,1]]);

T := (t1 , t2 ) →

 1 0 0
t1 1 0
t2 0 1


> A:=vector([1,d,0]);

A := [1, d, 0]

One potential result of the project - the epicycloid corresponding to the parameter values R = 10,
r = 5 and d = 8 is presented in Figure 6.

Figure 6: Epicycloid

The Maple code of the solution is here, or see [4].
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1.4.2 Spatial motion - Möbius strip

Another project to prove the knowledge of spatial transformations and the use of Maple deals with the
kinematic creation of the Möbius strip (Figure 7). It can be understood as a surface which is formed
by the motion of a line segment. Then the task of the project is to find such a rigid body motion which
by the changing of its parameter t moves a line segment of the 2d length from its initial position along
the Möbius strip with the interior radius R.

Figure 7: Möbius strip

The Maple code of the solution (see [5]):

> restart:
First we define the general transformation matrices Rev_x, Rev_y and Rev_z of revolution about
axes x, y and z, respectively, and the matrix Tr of translation by the vector (t1, t2, t3).
> Rev_x:=t->matrix([[1,0,0,0],[0,1,0,0],[0,0,cos(t),-sin(t)],
[0,0,sin(t),cos(t)]]);

> Rev_y:=t->matrix([[1,0,0,0],[0,cos(t),0,-sin(t)],[0,0,1,0],
[0,sin(t),0,cos(t)]]);

> Rev_z:=t->matrix([[1,0,0,0],[0,cos(t),-sin(t),0],
[0,sin(t),cos(t),0],[0,0,0,1]]);

> Tr:=(t1,t2,t3)->matrix([[1,0,0,0],[t1,1,0,0],[t2,0,1,0],
[t3,0,0,1]]);

Then, we derive the matrix M of the transformation which corresponds to the Möbius strip.
> M:=Rev_z(t).Tr(R,0,0).Rev_y(t/2);
> M:=evalm(M);
Initial position of the strip is assigned to the variable Strip0.
> Strip0:=expand([1,-d,0,0]+s*[0,2*d,0,0]);
Then the parametric expression Striph of the strip in homogenous coordinates is derived by the
command
> Striph:=evalm(M.Strip0);
and its parametric expression in the cartesian coordinates is assigned to the variable Strip by the
following command.
> Strip:=LinearAlgebra[SubVector](Vector(Striph),[2,3,4]);
Assigning values to the parameters R (interior radius of strip) and d (half width of the strip)
> R:=10: d:=5:
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gives us the parametric expression (vector-valued function) of the concrete strip.
> Strip;

[10cos(t) + cos(t)cos(t/2)(10s− 5), 10sin(t) + sin(t)cos(t/2)(10s− 5), sin(t/2)(10s− 5)]

The last command plots the given strip. The result is shown in Figure 7.
> plot3d(Strip,s=0..1,t=0..2*Pi,scaling=constrained);

2 Kinematics of serial robot-manipulators
The graphical and programming tools of Maple enable us to build both planar and spatial simple
movable models of respective manipulators.

The forward and the inverse kinematic problems refer to the relationship between joint variables
(angles or lengths) and the position and orientation of the end-effector of a robot-manipulator (see
Figure 8). The velocity problem deals with the relationship between the instantaneous velocity of the
end-effector and the joint velocities of a manipulator. Examples related to these very basic problems
in robotics represent real and attractive problems the solving of which requires mostly basic knowl-
edge of linear algebra, geometry, differential geometry and methods of solving systems of nonlinear
algebraic equations.

The following examples are introduced in courses of Geometry and Algebra and in the optional
subject Solving problems using Maple, which is one of those preparing students of teaching to use
CAS programmes in education.

2.1 A serial robot-manipulator
Kinematics of robot-manipulators deals with the study of their motions, independent of the forces
which cause them. Serial robot-manipulator (RM) can be introduced as an open kinematic chain
of rigid links connected together by movable joints. The mutual motions of the links are mostly
elementary (rotational or translational) and are independent of one another. More complicated mutual
motions of links can be produced from these elementary motions. Therefore we can distinguish only
two basic types of joints (or corresponding axes), rotational, denoted by R, and prismatic, denoted
by P and also called translational or sliding. Each joint represents the interconnection between two
links. Thus, the relative configurations (relative displacement between adjacent links) of each pair of
adjacent links of the robot are determined by values of joint variables θi - angles for revolution joints
and linear displacements for prismatic ones (although, the variable for the prismatic joint is often
denoted by a special character, for example d). Then, the configuration (position and orientation)
of the end-effector in SE(3) ( or SE(2) in the case of a planar manipulator) of a serial robot with
n-joints can be expressed by a vector of θi, with i = 1, 2, ..., n.

To describe the configuration of types of successive n joints in a RM we use a n-tuple of compo-
nents R or P with the corresponding order. For example a serial robot-manipulator with all three axes
rotational can be assign in brief by the 3-tuple RRR and a serial manipulator with four axes, first and
third rotational, second and fourth prismatic, can be given by the 4-tuple RPRP.
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2.2 The forward kinematic problem
The forward kinematic problem deals with the finding of the position and orientation of the end-
effector if values of the joint variables (angles or lengths) are given.

Example 3 Position of the end-effector Consider a planar robot-manipulator with three revolute
joints and two movable links of lengths l1 and l2 (Figure 8). Find an explicit formula which relates
values of the joint variables to the position E = [xE, yE] of the end-effector with respect to the system
of coordinates x, y connected to the base of the end-effector.

x

y

q1

q2

q3

xE

yE
l
1

l
2

Figure 8: Planar RRR manipulator

To solve the example we can apply two approaches, both representing attractive application of
mathematics subject matter. First, we can simply use trigonometric functions. Second, considering
the kinematic features of the problem, we can use the composition of the successive link transforma-
tions. It is a nice illustration of a utilization of matrices in geometry, application of homogeneous
coordinates, homogeneous transformation matrices and matrix algebra (Many similar exercises can
be found in [Cox, 1998], [Craig, 1986], [Tsai, 1999]).

Solution 1 - The trigonometric approach
To derive relations between joint variables θ1, θ2, θ3 and the coordinates [xE, yE] of the end-effector
we simply apply definitions of trigonometric functions sine and cosine (see Figure 9)

E(θ1, θ2) = [l1 cos θ1 + l2 cos (θ1 + θ2), l1 sin θ1 + l2 sin (θ1 + θ2)].

Orientation of the end-effector is given by the sum of joint variables - angles θ1, θ2, θ3 of mutual
rotation of successive joints

θ = θ1 + θ2 + θ3.

The introduced trigonometric approach to the solution of the forward kinematic problem fails in
case of more complex spatial mechanisms. Moreover it does not provide us with information about
positions of individual links and about their mutual configurations that are crucial to the full control
of a manipulator motion.
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Figure 9: Planar RRR manipulator - joint variables

Solution 2 - The kinematic approach
We will derive transformation of the frame firmly connected to the end-effector by way of a compo-
sition of the successive link transformations (Figure 10). The Maple code of the solution is here, or
see [6].
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q2

q3

xE

yE

Figure 10: Planar RRR manipulator - frames attached to links

Consider the homogeneous transformation matrices of revolution R(θ) and translation T (⃗t)

R := θ →

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 , T := t →

 1 0 0
t1 1 0
t2 0 1

 .

We shall compute the individual transformation matrices A01, A12, A23 which relates the neighbor-
ing links (the coordinate systems attached to these links - see Figure 10).

> A01:=evalm(R(theta1)):
> A12:=evalm(T([l1,0]).R(theta2)):
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> A23:=evalm(T([l2,0]).R(theta3)):
Then the transformation matrix A that performs the end-effector motion is the result of the multi-
plication of the above matrices A01, A12 and A23. Entries of this resulting matrix have the form
of products of trigonometric expressions comprised of the terms sin θi and cos θi for i = 1, 2, 3. To
simplify them we use the function combine that converts these expressions into a sum of trigono-
metric terms the arguments of which are linear combinations of the original arguments. In our simple
example the function combine uses this way of transformation automatically, but in cases of some
more complex trigonometric expressions we could appreciate the possibility of specifying this trans-
formation directly, using a second optional argument trig as shown in the following command.
> A:=map(x->combine(x,trig),evalm(A01&*A12&*A23));

A :=

 1 0 0
cos(θ1) l1 + cos(θ1 + θ2) l2 cos(θ1 + θ2 + θ3) −sin(θ1 + θ2 + θ3)
sin(θ1) l1 + sin(θ1 + θ2) l2 sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3)


To get coordinates of a reference point of the end-effector (the origin of the corresponding frame)
relative to the base frame we multiply the coordinates of the base frame origin by the transformation
matrix A.
> Xh:=Vector[column]([1,0,0]):
> X1h:=Vector[column](evalm(A.Xh));

X1h :=

 1
cos(θ1) l1 + cos(θ1 + θ2) l2
sin(θ1) l1 + sin(θ1 + θ2) l2

 (1)

> E:=unapply([X1h[2],X1h[3]],[theta1,theta2]);

E := (θ1, θ2) → [cos(θ1) l1 + cos(θ1 + θ2) l2 , sin(θ1) l1 + sin(θ1 + θ2) l2 ]

2.3 Building of live models of planar manipulators
Previous computation of the individual transformations between neighboring links implies the possi-
bility to build live movable models of manipulators (see Figure 11).

0

0.4

0.8

1.2

1.6

1 2 3 4

Figure 11: Model of a planar RPR manipulator

The basic building blocks of such models are the following simple pre-programmed procedures and
functions (Their Maple codes are here, or see [7].):
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tool(h)
- representation of the end-effector, parameter h means the height of the tool.
> tool:=h->plottools[polygon]([[0,0],[0,-0.6*h],[h,-0.8*h],[0,0],

[h,0.8*h],[0,0.6*h]],color=black):

link(l,w,col)
- model of a link, parameters l, w and col mean the length, width and color of the link, respectively.
> link:=(l,w,col)->plottools[rectangle]([0,w/2],[l,-w/2],color=col):

base(w)
- imitation of the manipulator’s base of the width w.
> base:=w->plottools[rectangle]([-2*w,-w/2],[0,w/2],color=black):

P_joint(d,w,col)
- model of the prismatic joint, parameters d, w and col mean the variable length, width and color of
the joint, respectively.
> P_joint:=(d,w,col)->plottools[rectangle]([0,0.3*w],[d,-0.3*w],

color=col):

g(A,points)
- function that apply a transformation given by the matrix A to a set of points points:
> g:=proc(A,points)

local G01,g01,x01,y01:
G01:=map(x->evalf(x),evalm(A&*linalg[matrix](3,1,[1,x,y]))):
x01:=unapply(G01[2,1],x,y):
y01:=unapply(G01[3,1],x,y):
g01:=plottools[transform]((x,y)->[x01(x,y),y01(x,y)]):
g01(points);
end:

Example 4 Model of a planar manipulator. Use the above procedures to build a model of the
planar RRR manipulator.

The Maple code of the solution (see [8]):

See Figure 12. Both links and the end-effector are constructed in the same manner. First we define the
element (a link or the end-effector) in its starting position with a reference point in the origin of the
base frame - using the link and tool procedures. Then we apply a corresponding transformation
to each of these elements via the g function.
> link1:=g(R(-Pi/5),link(2,0.2,blue)):
> link2:=g(R(-Pi/5).T([2,0]).R(0.9),link(1,0.2,red)):
> end_effector:=g(R(-Pi/5).T([2,0]).R(0.9).T([1,0]),tool(1/10)):
Finally we display all the elements of the manipulator together.
> plots[display](base(0.2),link1,link2,end_effector,
scaling=constrained);
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Figure 12: Model of a planar RRR manipulator

Using the foregoing procedures we can define a single command to represent a model of a planar
manipulator. As we can see in the next example of the RPR planar manipulator, the parameters of
such a command will be lengths of links li and angles θi between directions of successive ones.

Example 5 Define a single command to represent the planar RPR manipulator.

The Maple code of the solution (see [9]):

We will produce the procedure RM_RPR(l1,l2,l3,theta1,theta2) where the parameters
l1 and l2 are constant and the remaining l2, theta1 and theta2 are variable. To emphasize the
variable length of the second link we label it d instead of l2.
RM_RPR:=proc(l1,d,l2,theta1,theta2)
local link1,link2,Pjoint,end_effector,w:
w:=1/8*max(l1,l2):
link1:=g(R(theta1),link(l1,w,blue)):
Pjoint:=g(R(theta1).T([l1,0]),P_joint(d,w,grey)):
link2:=g(R(theta1).T([l1,0]).T([d,0]).R(theta2),link(l2,w,red)):
end_effector:=g(R(theta1).T([l1,0]).T([d,0]).R(theta2).T([l2,0]),
tool(w)):

plots[display](base(w),link1,Pjoint,link2,end_effector,
scaling=constrained):

end:
To plot the model of the manipulator in some specific configuration we invoke the command with
relevant values of parameters. The result is shown in Figure 11.
> RM_RPR(2,1,2,Pi/6,-Pi/4);

2.4 Movable 3D model of a serial robot-manipulator
Similarly to the planar model we can build a more realistic spatial model of a robot-manipulator. For
example the Robot6R procedure enables us to represent any configuration θ = (θ1, θ2, ..., θ6) of a
serial 6-axes robot-manipulator of the so called Puma type [Craig, 1986] as is shown in Figure 13 (a).

Such a type of a serial robot-manipulator has six rotational axes. Its architecture is given by the
standard Denavit-Hartenberg parameters ([Angeles, 1997], [Craig, 1986]): ai is the distance from the
ith axis to the i+1th axis, αi is the angle from the ith axis to the i+1th axis, di means the offset on the
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ith axis and θi denotes the angle of rotation around the ith axis ri (see Figure 13 (b)). In the case of the
Puma type manipulator, the parameters ai, αi and di are given constants whereas the parameters θi are
variables. Then, when the architecture of a robot-manipulator is known, the configuration (position
and orientation) of the end-effector in SE(3) of a serial robot with 6-joints can be expressed by the
vector θ = (θ1, θ2, ..., θ6) of angles of revolution around the joints’ axes r1, r2, ..., r6.

> Robot6R(Pi/2,-Pi/6,-Pi/4,-Pi/6,Pi/2,0);
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(a) Resulting model (b) Its axes of revolution

Figure 13: Procedure Robot6R

The Maple code of the procedure Robot6R is here, or see [10].

2.5 The inverse kinematic problem
The inverse kinematic problem deals with the finding of all possible values of the joint variables if
the position and orientation of the end-effector are given. Examples corresponding to the inverse
kinematic problem can be used as a means of introduction to the solving of systems of nonlinear
equations.

Example 6 Find values of the joint variables θ1, θ2 that correspond to given position [xE, yE] =
[−1, 0.5] of the end-effector of the planar RRR manipulator with link lengths l1 = 1, l2 = 1.

Solution 1 - Trigonometric equations
A corresponding manipulator is shown in Figure 8. To solve the task we can take advantage of our
solution to the forward kinematic problem, for example (1). Then we can see that it is sufficient to
solve the two corresponding trigonometric equations. The problem has two solutions, they are shown
in Figure 14.
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> X1:=([X1h[2],X1h[3]]);

X1 := [cos(θ1)l1 + cos(θ1 + θ2)l2, sin(θ1)l1 + sin(θ1 + theta2)l2]

> E:=[-1,1/2]; l1:=1; l2:=1;
> op(X1-E);

1 + cos(θ1) + cos(θ1 + θ2), −1

2
+ sin(θ1) + sin(θ1 + θ2)

> sol:=allvalues(solve({op(X1-E)},{theta1,theta2}));

sol :=

θ2 = −arctan(
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3
) + π, θ1 = arctan
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Figure 14: Two solutions to the given inverse problem

The Maple code of the solution is here, or see [11].

Although the given problem can be solved in such simple way we can use it to illustrate more
general methods that are used to solve the inverse kinematic problem for more complex manipulators.
To solve the system of nonlinear equations corresponding to the problem we can use Gröbner basis
or the method of resultant. In the case of more general manipulators it can be necessary to solve them
numerically [Tsai, 1999].
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Solution 2 - Polynomial equations
Let [a, b] be the coordinates of the end-effector and s1, c1, s2, and c2 be the shortened forms of the
expressions sin θ1, cos θ1, sin θ2 and cos θ2, respectively. The inverse kinematic problem of the given
manipulator can be expressed by the following system of four polynomial equations where s1, c1, s2,
and c2 are variables and l1, l2, a, b are parameters.
> r1:=X2[1]-a; r2:=X2[2]-b; r3:=c1ˆ2+s1ˆ2-1; r4:=c2ˆ2+s2ˆ2-1;

r1 := c1 l1 + l2 c1 c2 − l2 s1 s2 − a

r2 := s1 l1 + l2 s1 c2 + l2 c1 s2 − b

r3 := c1 2 + s1 2 − 1

r4 := c2 2 + s2 2 − 1

To find solutions of the system of polynomial equations we use the Groebner basis of the correspond-
ing ideal. It can provide us with easily solvable equations in s1, c1, s2, and c2.
> GB:=Groebner[gbasis]([r1,r2,r3,r4],plex(c2,s2,c1,s1));
After substitution of lengths l1, l2 into resulting polynomials we get system of simple equations link-
ing the joint variables with the end-effector coordinates [a, b].
> b1; b2; b3; b4;

c2 + 1− 1

2
a2 − 1

2
b2

s2 +
1

2

(2 a2 + 2 b2) s1

a
+

1

2

−b a2 − b3

a

c1 +
b s1

a
+

1

2

−a2 − b2

a

s1 2 +
(−4 b3 − 4 b a2) s1

4 a2 + 4 b2
+

a4 + b4 − 4 a2 + 2 a2 b2

4 a2 + 4 b2

The Maple code of the solution is here, or see [12].

Resolution of the inverse kinematic problem enables us to control the movement of the end-
effector of a manipulator along some given trajectory.

Example 7 Movement of the end-effector. Consider a planar RRR manipulator with link lengths
l1 = 1, l2 = 1 and a curve which is given by parametric equations and lies inside the working area of
the manipulator. Execute the motion of the end-effector of the manipulator along the curve.

Solution to the example is shown in Figure 15. The Maple code of the solution is here, or see [13].
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Figure 15: The end-effector movement

3 Conclusion
We have presented examples of various complexity that were all devoted to the matrix representation
of geometric transformations. The greater part of the examples dealt with the basic problems of
robotics. The aim of the paper was to show that the solving of such, at first glance engineering
problems, can be beneficial to a wider audience of students at high schools and universities.
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